Contact Qualifications Research Publications Teaching Leadership Links



Publications are listed in reverse chronological order.

[22] U. Baumgartner, J. Ramagge and G.A. Willis, Scale-multiplicative semigroups and geometry: automorphism groups of trees, preprint, arXiv:1312.1064
[21] B. Armstrong, M. Fielding, S. Kirk, and J. Ramagge, Factors affecting success in CHEM101 at UOW, Austral. Math. Soc. Gaz. 41 (2014) 91–98.
[20] M. Laca, I. Raeburn, J. Ramagge, and M.F. Whittaker, Equilibrium states on the Cuntz-Pimsner algebras of self-similar actions, J. Funct. Anal. 266 (2014) 6619–6661.
[19] N. Brownlowe, J. Ramagge, D. Robertson, and M.F. Whittaker, Zappa-Sz´ep products of semigroups and their C∗-algebras, J. Funct. Anal. 266 (2014) 3937–3967.
[18] M. Laca, I. Raeburn and J. Ramagge, Phase transition on Exel crossed products associated to dilation matrices, J. Funct. Anal. 261 (2011) 3633–3664.
[17] U. Baumgartner, M. Laca, J. Ramagge and G.A. Willis, Hecke algebras from groups acting on trees and HNN extensions, J. Algebra 321 (2009) 3065–3088.
[16] J. Mare, J. De Don´a, M. Seron, H. Haimovich and J. Ramagge, When does QP yield the exact solution to constrained NMPC?, Int. J. Control 82 (2009) 812–821.
[15] U. Baumgartner, J. Ramagge and B. R´emy, Contraction groups in complete Kac-Moody groups, Groups Geom. Dyn. 2 (2008) 337–352.
[14] U. Baumgartner, J. Ramagge and G.A. Willis, A compactly generated group, whose Hecke algebras admit no bounds on their representations, Glasg. Math. J. 48 (2006) 193–201.
[13] U. Baumgartner, J. Foster, J. Hicks, H. Lindsay, B. Maloney, I. Raeburn, J. Ramagge and S. Richardson, Hecke algebras of group extensions, Comm. Alg. 33 (2005) 4135–4147.
[12] A. Ram and J. Ramagge, Affine Hecke Algebras, cyclotomic Hecke algebras and Clifford theory, A tribute to C. S. Seshadri (Chennai, 2002), 428–466, Trends Math., Birkh¨auser, Basel, 2003.
[11] J. Ramagge and W.W. Wheeler, Cohomology of buildings and finiteness properties of A˜n-groups, Trans. Amer. Math. Soc. 354 (2002) 47–61.
[10] J. Ramagge, Groups, representations and Haagerup’s inequality for buildings. Functional Analysis, Optimization and Applications, J. Giles and B. Ninness (eds), Proc. CMA 36 (1999) 121–126.
[9] J. Ramagge, A.G. Robertson and T. Steger, A Haagerup Inequality for A˜1 × A˜1 and A˜2 Buildings, Geom. Funct. Anal. 8 (1998) 702–731.
[8] J. Ramagge and W.W. Wheeler, Posets and differential graded algebras, J. Austral. Math. Soc. Ser. A 64 (1998) 1–19.
[7] J. Ramagge and A.G. Robertson, Factors from buildings, Contemp. Math. 206 (1997) 165–167.
[6] J. Ramagge and A.G. Robertson, Factors from trees, Proc. Amer. Math. Soc. 125 (1997) 2051–2055.
[5] J. Ramagge and A.G. Robertson, Triangle buildings and actions of type III1/q2 , J. Funct. Anal. 140 (1996) 472–504.
[4] J. Ramagge, A realization of certain affine Kac-Moody groups of types II and III, J. Algebra 171 (1995) 713–806.
[3] J. Ramagge, On certain fixed point subgroups of affine Kac-Moody groups, J. Algebra 171 (1995) 473–514.
[2] J. Ramagge, Affine Kac-Moody groups of types II and III, C. R. Math. Acad. Sci. Paris 319 (1994) 207–212.
[1] J. Ramagge, An introduction to Kac-Moody groups, Austral. Math. Soc. Gaz. 19 (1994) 207–212.


ResearcherID profile:
ORCiD profile:
Google Scholar profile:

My MathSciNet author ID is 352868. From UOW this can be accessed via
although the initial segment of the address will vary for other institutions.


Jacqui Ramagge

School of Mathematics and Statistics,
University of Sydney,
NSW 2006, Australia.

T: (+61 2) 9351 4533
M: 0407 065 911






All content © 2015